Energy conversion factors table


Converting Mw into mmscf, BHP into BOED, Tons into flows?
If you are a proposal manager, application engineer or marketing manager
here you find a conversion table for your energy factors!


Share on Linkedin


Approximate energy conversion factors table

HHV @15°C, 101325Pa Power Heat Flow Volume Weight Oil
Mw BHP Gj/d MMBtud MMscfd MMnmc/y m3LNG/d LNG tons/y Boed TOE/d
Power Mw 1 1341.0 86.40 81.89 0.08085 0.792 3.686 568.2 14.00 2.064
BHP 0.0007457 1 0.06443 0.06107 6.092E-05 0.00059 0.002749 0.4237 0.01044 0.001539
Heat Gj/d 0.01157 15.52 1 0.948 0.0009358 0.0091638 0.04266 6.577 0.1620 0.0239
MMBtud 0.0122 16.38 1.055 1 0.0009873 0.0096683 0.04501 6.939 0.1709 0.02520
Flow MMscfd 12.37 16586 1069 1013 1 9.8 45.59 7028 173.1 25.52
MMnmc/y 1.263 1694 109.1 103.4 0.1021 1 4.655 717.7 17.68 2.606
Volume m3LNG/d 0.2713 363.8 23.44 22.22 0.02194 0.2148 1 154.2 3.798 0.5599
Weight LNG tons/y 0.001760 2.360 0.1521 0.1441 0.0001423 0.001393 0.006487 1 0.02463 0.003632
Oil Boed 0.07144 95.81 6.173 5.850 0.005776 0.05656 0.2633 40.59 1 0.1474
Toe/d 0.4846 648.8 41.87 39.68 0.03918 0.3837 1.786 275.3 6.783 1
Example:

Read it horizontally:
1 Mw = 1 Mj/s = 0.018018 kg/s of NG = 0.2516 ncm/s = 0.937218 scf/s = 80975,67 scf/d = 0.080976 MMscfd
This is the minimum flow of NG you can use to run a 1 Mw gas turbine with 100% efficiency: i.e burning every CH4 atom of a CH4 pure NG stream.


Note about the Energy Conversion Table:


Selling to the Oil & Gas and Energy industry, requires to jump from natural gas to oil, from power to physical quantities: tons, barrels, cubic meters, from British to international standards…This table wants to be a hand while gauging a new or an old project, a prospective investment or the purchasing of a new equipment.

These factors are taken into account:

  • Oil barrels, BOED, Tons of Oil, TOE / day
  • LNG natural gas cubic meters, metric tons per day
  • Methane normal cubic meters Ncm, standard cubic feet scf, per day or per year
  • Heat equivalent Giga Joules, GJ, or British Thermal Units BTU
  • Power in Mega watts, MW or British Horse Power BHP


Note the 6 categories:
Power, Heat, Flow, Volume, Weight and Oil.
They should guide you.

Assumptions behind these figures:

  • The first is that we choose absolute value. For Natural Gas, e.g., we choose an HHV of 55.5 Mj/Kg.
    This is theoretical. No pipeline will give you gas with such a purity. But then you can apply your corrective factors, your efficiency factors, and come to a conclusion.
  • The second is that we did our bet, both in researching accurate values, and doing accurate calculations.
  • The third is the basic figures I used. They are listed in the second table at bottom page.
  • You use this table at your own risk.
    However, if you discover an error, we will be happy to know and thank you in advance.

    Unit of Measure Value Note
    ncf/nmc 35,31 -
    scf/nmc 37,33 -
    cal/J 4,1868 -
    j/btu 1055,056 -
    t/b 7,3 API 33
    BHP/Kw 0,7457 -
    CH4 Mol weight 16,043 g/mol
    R 8,31434 j/mol/K
    CH4 HHV 55,500 @ 15,4 °C MJ/kg
    CH4 LHV 55,009 @ 15,4 °C MJ/kg
    molar volume CH4 (cm/mol) 0,022354315 @ 0 °C , 101325 Pa
    molar volume CH4 (cm/mol) 0,023593844 @ 15 °C , 101325 Pa
    density kg/ncm 0,71766905 @ 0 °C , 101325 Pa
    density kg/scm 0,6799655 @ 15 °C , 101325 Pa
    liquid density kg/cm 422,36 @ 101325 Pa
    mol/nmc 44,73409275 -
    mol/scm 42,38393692 -
    scm/ncm 1,05544921 measured
    scm/ncm 1,057714421 pv=nrt
    TOE 41,868 Gj
    1 barrel 158,9873 liters
    oil density 0,858 kg/liter @ 59 °F
    oil density 7,335 barrels/metric ton
    1 boe 5,8 * 10 ^6 Btu @ 59 °F - HHV
    oil HHV 45,25 Mj/kg @59 °F
    oil HHV 38,84 Mj/liter
    oil LHV 42,98 Mj/kg @59 °F
    oil LHV 36,89 Mj/liter


Gas properties for Natural Gas components:

Component Mole Wt Hydrogen Atoms Carbon Atoms Cp (1) HHV (2) LHV Auto-ignition T (F) (3) Flame Speed @ xx (in/s)(4)
0.60 0.80 1.00 1.20 1.40
H2 2.0159 2 0 3.4010 324.2 273.9 752 31.74 56.10 78.99 93.75 106.30
C1 16.0430 4 1 0.5266 1009.7 909.1 999 3.83 10.95 14.65 12.54 5.67
C2 30.0690 6 2 0.4080 1768.7 1617.8 959 4.49 11.12 15.91 16.32 10.40
C3 44.0960 8 3 .03887 2517.2 2315.9 871 5.36 11.48 15.53 15.42 9.51
IC4 58.1220 10 4 0.3867 3256.6 3001.0 864 6.34 12.58 17.39 18.04 13.67
NC4 58.1220 10 4 0.3951 3262.0 3010.5 761 5.03 10.50 14.44 13.89 7.87
IC5 72.1510 12 5 0.3829 3999.7 3697.9 788 From CompressorTech2 APRIL 2015, pg 76
NC5 72.1510 12 5 0.3880 4008.7 3706.8 496
C6 86.1780 14 6 0.3857 4756.1 4403.9 433
C7 100.2050 16 7 0.3842 5502.8 5100.3 433
C8 114.2320 18 8 0.3831 6248.9 5796.1 428
H2S 34.0760 2 0 0.2370 586.7 637.0 500
(1) Specific heat Cp at costant pressure conditions near atmospheric
(2) Heating values in BTU/scf at 14.696 psia, 60°F, and uncorrected for compressibility from GPA 2545-09
(3) Auto-ignitions temperatures from “Flammability Characteristics of Combustible Gases & Vapors”
(4) Laminar Flame Speed from University of Southern California Combustion Kinetics Laboratory
C1 methane
C2 ethane
C3propane
C4 isobutane - normal Butane
C5 isopentane
C6 hexane
C7 heptane
C8 octane
H2S hydrogen sulfide
H2 hydrogen


Give it a try and let me know how it worked for you!

Flavio

Grab a coffe